Ir al contenido

Attainment of Very High Energy By Means of Intersecting Beams of Particles in Physical Review, Vol. 102, No. 2, 1956, pp. 590-591

Attainment of Very High Energy By Means of Intersecting Beams of Particles in Physical Review, Vol. 102, No. 2, 1956, pp. 590-591

Ver a tamaño completo.

Attainment of Very High Energy By Means of Intersecting Beams of Particles in Physical Review, Vol. 102, No. 2, 1956, pp. 590-591

de Kerst, Donald; Cole, F. T.; Crane, H. R.; Jones, L. W.; et al

  • Usado
  • Tapa blanda
  • First
Estado
Ver descripción
Librería
Puntuación del vendedor:
Este vendedor ha conseguido 5 de las cinco estrellas otorgadas por los compradores de Biblio.
West Branch, Iowa, United States
Precio
EUR 210.10
O solamente EUR 191.43 con un
Membresía Biblioclub
EUR 4.67 Envío a USA
Envío estándar: de 7 a 14 días

Más opciones de envío

Formas de pago aceptadas

  • Visa
  • Mastercard
  • American Express
  • Discover
  • PayPal

Sobre este artículo

Lancaster: American Institute of Physics, 1956. 1st Edition. FIRST EDITION IN ORIGINAL WRAPS IN WHICH KERST REINVENTS COLLIDING BEAMS AS A METHOD OF REACHING HIGHER ENERGY & HERE PRESENTS "THE FIRST SERIOUS PROPOSAL FOR A COLLIDER" (WIKIPEDIA). Kerst proposed "a method for doubling the energy of impacts in particle accelerators by accelerating two beams of particles in opposite directions before allowing them to collide. The technique, [now] called "beam stacking", is currently used in most modern accelerators (including LHC) to accelerate beams of particles in opposite directions so they can collide.

In the 1950s, many thought it "not possible to control two beams of particles circulating in opposite directions (LHC). Some "had thought of colliding beams as a way to avoid dissipating a large fraction of the energy in forward motion when a fixed target is struck by an accelerated particle... [but] the density of particles in a beam used as a target is too small by many orders of magnitude to produce collisions at a useful rate. (Hyder, High-Brightness Accelerators, 28).

The physicist Donald W. Kerst working at a Midwestern Universities Research Association (MURA) began to study the problem. As he and his team tried to build up a beam sufficiently intense to create a realistic collider (a type of particle accelerator involving directed beams of particles). They were trying to ascertain how they could manipulate the radio frequencies so that they could build up an intense beam yet not destroy the stacked beam at high energy? Were that issue solved, Kerst et al., could begin to study the non-linear behavior — in other words, if they could make stacked beams stand, how long would they remain standing.

As Kerst writes in this paper "In planning accelerators of higher and higher energy, it is well appreciated that the energy which will be available for interactions in the center-of-mass coordinate system will increase only as the square-root of the energy of the accelerator. The possibility of producing interactions in stationary coordinates by directing beams against each other has often been considered, but the intensities of beams so far available have made the idea impractical. Fixed-field alternating gradient accelerators offer the possibility of obtaining sufficiently intense beam so that it may now be reasonable to reconsider directing two beams of approximately equal energy at each other" (Kerst, et al., 590).

Kerst's work, put forth in this paper, shows that beam stacking can produce a useful circulating particle density; that sufficient beam concentration can be achieved by ‘stacking' a number of high-intensity pulses in a ring. Kerst's proposed "storage ring colliders use this technique to accelerate particles rotating in opposite directions until they collide" (LHC). And he was right, they did. Again, this remains the methodology used in most particle accelerators., including the large hadron collider. CONDITION & DETAILS: Lancaster: American Institute of Physics. Individual issue in original wraps meticulously rebacked at the spine. Complete. 4to (10.5 x 8 inches; 263 x 200mm). Bright and very clean inside and out. Near fine.

Reseñas

Iniciar sesión or Crear una cuenta primero!)

¡Estás clasificando este libro como un obra, no al vendedor ni la copia específica que has comprado!

Detalles

Librería
Atticus Rare Books US (US)
Inventario del vendedor #
883
Título
Attainment of Very High Energy By Means of Intersecting Beams of Particles in Physical Review, Vol. 102, No. 2, 1956, pp. 590-591
Autor
Kerst, Donald; Cole, F. T.; Crane, H. R.; Jones, L. W.; et al
Estado del libro
Usado
Cantidad disponible
1
Edición
1st Edition
Encuadernación
Tapa blanda
Editorial
American Institute of Physics
Lugar de publicación
Lancaster
Fecha de publicación
1956

Términos de venta

Atticus Rare Books

30 day return guarantee, with full refund including shipping costs for up to 30 days after delivery if an item arrives misdescribed or damaged.

Sobre el vendedor

Atticus Rare Books

Puntuación del vendedor:
Este vendedor ha conseguido 5 de las cinco estrellas otorgadas por los compradores de Biblio.
Miembro de Biblio desde 2010
West Branch, Iowa

Sobre Atticus Rare Books

We specialize in rare and unusual antiquarian books in the sciences and the history of science. Additionally, we specialize in 20th century physics, mathematics, and astronomy.

Glosario

Algunos términos que podrían usarse en esta descripción incluyen:

Rebacked
having had the material covering the spine replaced. ...
Fine
A book in fine condition exhibits no flaws. A fine condition book closely approaches As New condition, but may lack the...
Spine
The outer portion of a book which covers the actual binding. The spine usually faces outward when a book is placed on a shelf....
First Edition
In book collecting, the first edition is the earliest published form of a book. A book may have more than one first edition in...
tracking-